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Overview |

A Interaction of Target and Electromagnetic (EM) Wave

A Information theory

I Introductory concepts

I Mutual information (MI)

I Ml for radar

I F a n dnemality (Relate P(error) to MI)

I Ml derivation for discrete input continuous output channel
A Example Results

i Fl14, F15, F16 Comparison

i F18, F35 Polarization Comparison

i Fl14, F15, F16 Comparison: coherent vs. non-coherent

i Boeing 707 (1:25) Measurements, Polarization Comparison

A Conclusions
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Introduction

A Needa technidegsiegnd & completely new NC°

I Take into account the performance of and Interaction between :
A Radar sensor, Target, Signal processing algorithms

T Need new theory that allows for the analysis and comparison
of disparate radar system conceptual design
I Bound on absolute maximum performance achievable to test NCTR

A Information Theory based approach
I Information Theory deals with fundamental limits on performance
I Mainly used in communications - little prior art for NCTR
A Demonstrate that information theory, and specifically the concept of mutual
information (MI) can improve insight during NCTR designs
A Gain scientific insight into information theory methods as applied to radar
target recognition

A Gain insight into interpretation of information theoretic results for radar NCTR
problems

GIR
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Introduction

A Standard approach
I Use Feature Extraction followed by Classifier
i Single confusion matrix, badly defined SNR

Table 4: Confusion matrix for straight-and-level trajectory #1 with noise figure = 65 dB
| Aircraft || F-15 [ T-38A | Falcon-20 | Falcon-100

F-15 51 41 0 8
T-38A 40 53 0 7
Falcon-20 0 0 90 10
Falcon-100 6 3 12 79

I Adversarial Examples (Next slide)

I Often researchers try to make everything an image and then use standard image
classification techniques

A Information Theory approach
T No Feature extraction
T No Classifier

I Estimates the best possible recognition performance given
A Targets and materials
A Target geometries fl

A Radar waveforms
I Graph of P(error) vs SNR

© CSIR 2019



Adversarial Examples

A Attack on a classifier

Slide5

I What is the least interference which can be added to change the output to force

an error

+ .007 %

£

“panda”
57.7% confidence

AN & VRS e

sign(VaJ (0, 2, y))

“nematode”
8.2% confidence

T -+
(:sign(vm./((). . f/})
“gibbon™

09.3 % confidence

GIR
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Adversarial Examples

A Examples: Noise, single pixel, 3-D printed

Planetarium Comforter
Mosque(7.81%) Pillow(6.83%)

A\ [MAL
fnrTim
il i1

Jellyfish Whorl
Bathing tub(21.18%) Blower (37.00%)

W classified as turtle [ classified as rifle GI R

B classified as other
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Information Theory - Overview

A Information theory mathematically formalizes the relatively vague concepts of
a Amessaged and the amount of Ai nf or m:

A Shannon 1948

I AThe mathematical theory of communicationo- Predicts
A Maximum compression of a source
A Maximum data rate over a channel

i Unfortunately he doesné6t say how to achieve it
A Communication: Source Channel Recaiver
A Radar. T e B el S ol
e DIFFRAGTION
A Important distinction i mind-set change Evce iy
SPECULAR DIFFRACTION Y

. SURFACE
I The radar TX only controls the SNR and the RETURN  (ocoon o

illumination of the target via its waveform 1P NS
o~ . . DIFFRACTION t
I Not the information content

CAVITY

NMe —4  RETURN

A Information content is: e _h_::ég\
TRAVELING WAVE

i Function of geometry of the target DURVATURE \ ECHO

i And the interaction of the target with EM energy FEORN AP oR seAM

ECHO © CSIR 2019
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Target i EM Field Interaction

A Scattering mechanisms T o ;
CORNER !
DIFFRACTION
EDGE Ry o <Creeping Wave,
S;LIJE;FUAL(?; DIFFRACTION N % 1k @
RETURN CF:,EEC:?G INTE;!:'_([DO'I'ION
TIP RETURN o1 _ . 1
DIFFRACTION | CAVITY R ) T oous
st RETURN
7< — 001 4 1 10 100
— e 22
CURVATURE THAVE'I-EICNI-?O WAVE Sphere Circumference in Wavelengths
DISCONTINUITY
RETURN \ h
GAP OR SEAM
ECHO
A EM Theorems I YA r—
I Uniqueness i only one solution =y
I Superposition T consider sources in isolation ol
I Linearty-Maxwel | 6s equations are | ine

A Linear system theory (time and frequency response) is valid
I Scaling of targets

8
A Reducing target requires increased conductivity GIR
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Overview and Application to Radar Identification

A The radar problem can thus be analysed as a non-optimal communication
system.

A The factor which limits the performance of a communication system is the
amount of mutual information between the transmitted signal set and the
received signal set.

A To analyse the radar problem the amount of mutual information between all
possible target waveforms (responses) and the waveform(s) received at the
radar by its receiver has to be estimated

Source > Channel » Recsiver
Measurement Radar
Target Mechanism . Receaiver

GIR
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Information Theory i Self Information

A Self information
i Measure of fAsurpriseo when observing
I Message length required to transmit the specific outcome of a RV

8¢

I(x):log% g o(x) 1[0.1

(o2}
—

I Base of log() is usually 2
I Then information is measured in bits

A Examples:

Self information [bits]
D
/

Coin p=Y% H(X) = 1 bit 2 N

Dice p=1/6 H(x) = 2.59 bits T~

Lottery p=1/(10,068,347,520)  H(x)=33.23 bits O o5 o021 o5 o8
D = 0.999999999900679  H(x) = 1.433e-10 bits Probability p(x)

A What happens when p = 0?
[ |

Standard information theory approach:
im.plog(p) =0 CGSIR
p- 0"
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Information Theory Entropy

AAverage fdself informat.i onE({)X}:ogvp@g
k=1
H(X)=E{1(x} = & p(3log( K ) lim_plog (p)=0

A Entropy is the average number of bits required to transmit the
result of the output of the RV

A Properties:
I H(X)>=0
i H(X) <=log,(N)
I H(X) =log,(N) when p,(x) =1/N forallk=1..N

A Example
i RV with two outcomes: H(X)= -%|092(%) %|092(—‘Z) "
i Eg. Biased coin = 1( 2) 2f 0.415 GIR

=0.5 40.3113 0.8113 hi



Information Theory Entropy e

A Definition:
H(X)=E{1(x} = & p(log( K ) limplog( p) =0

xi Ry

A Example i 2 output Random Variable:

P =P p, =1

I

| H(X)= plog,(n) plog,( p)
o] _ = plog,(p) @ plog,(1 p)
2‘%0.6- 7
550.5- 7
£ 04l | H(X)= +log,(5) 3log,(3)

03] = 1( 2) 3{ 0.419

- =05 403113 0.8113bi _

0 0.1 0.2 03 04 05 06 0.7 0.8 09 1 GR
Probability p1(x)
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Information Theory 1 Joint & Conditional Entropy.

A Joint Entropy H(X.Y)=E (XY} =& & f x ylog( b x))
xi Rg yi R
A Measure of the uncertainty in a

I <= sum individual entropies
I >=max (H(X), H(Y))

A Conditional Entropy H(X|Y)=E H(XIY =9} =& & # x ylog( p % ))
X R yiR

A Amount of information needed to describe X, given Y has occurred
I OR: Additional bits needed to communicate X given that both parties know Y.

I Note: conditioning always reduces entropy

——

-
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Information Theory i Mutual Information (MH

A Mutual Information (X;Y)=H(X) -H(XIY) #Y X

L oo & P(xY)
"8 arbeyoog, oy

I Reduction in a-priori uncertainty in X

T Amount of information one RV contains about another RV

© CSIR 2019
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Information Theory i Properties of M

L(X;Y)=a anp(x Wog?p(x) p( y)

X R¢ YIR
A Always positive | (X;Y)2 0

A Zero if and only if X and Y are statistically independent
1(X;Y)=0 iffP(X,Y) = X R Y

A More reliable measure of independence than correlation

A Maximum number of partitions of X based on observation of Y
N = ézl (X,Y)

A Equivalent to maximum number of classes which a classifier can

discern. .

GIR
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Information Theory i Ml vs Correlation

A Correlation coefficient
I 2nd QOrder Statistic

1
pxy = E[(X — pux)(Y — py)]
Tyay
1
= Y (z— px)(y— py)P(X =2,Y =y)
oTxay Ty
. 0.8 0.4 0 -0.4 -0.8 -1
1 1 1 1 1 -1
///' // e Seappms e Sy T \\\ \\

GIR
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Information Theory i MI vs Correlation Example.1

A Example: 64 equally probable points on unit circle

A Correlation = 0.0
A MI = log(1/64/(1/32 x 1/32))
= 4 bits
A H(Q) = log(32)
= 5 bits
A HQIN =HQ) T M
=57 4
= 1 bit
A H(1,Q) = log(64)
= 6 bits
A MI = H(l) + HQ) i H(I,Q)
=5+571 6 =4 hits

A Meaning of 1 bit ? GIR
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