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Å Interaction of Target and Electromagnetic (EM) Wave

Å Information theory

ï Introductory concepts

ï Mutual information (MI)

ï MI for radar

ïFanoôsInequality (Relate P(error) to MI)

ïMI derivation for discrete input continuous output channel

Å Example Results

ï F14, F15, F16 Comparison

ï F18, F35 Polarization Comparison

ï F14, F15, F16 Comparison: coherent vs. non-coherent

ï Boeing 707 (1:25) Measurements, Polarization Comparison

Å Conclusions
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Å Need a technique to ñdesignò a completely new NCTR recognition function 

ï Take into account the performance of and Interaction between :

Å Radar sensor, Target, Signal processing algorithms

ï Need new theory that allows for the analysis and comparison 

of disparate radar system conceptual design

ï Bound on absolute maximum performance achievable to test NCTR

Å Information Theory based approach

ï Information Theory deals with fundamental limits on performance

ï Mainly used in communications - little prior art for NCTR

Å Demonstrate that information theory, and specifically the concept of mutual 

information (MI) can improve insight during NCTR designs

Å Gain scientific insight into information theory methods as applied to radar 

target recognition

Å Gain insight into interpretation of information theoretic results for radar NCTR 

problems
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Å Standard approach

ï Use Feature Extraction followed by Classifier

ï Single confusion matrix, badly defined SNR

ï Adversarial Examples (Next slide)

ï Often researchers try to make everything an image and then use standard image 

classification techniques

Å Information Theory approach

ï No Feature extraction

ï No Classifier

ï Estimates the best possible recognition performance given
Å Targets and materials

Å Target geometries

Å Radar waveforms

ï Graph of P(error) vs SNR
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Å Attack on a classifier

ï What is the least interference which can be added to change the output to force 

an error
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Adversarial  Examples
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Å Examples: Noise, single pixel, 3-D printed
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Adversarial  Examples
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Å Information theory mathematically formalizes the relatively vague concepts of 

a ñmessageò and the amount of ñinformationò the message contains. 

Å Shannon 1948
ï ñThe mathematical theory of communicationò - Predicts

Å Maximum compression of a source

Å Maximum data rate over a channel

ï Unfortunately he doesnôt say how to achieve it

Å Communication:

Å Radar:

Å Important distinction ïmind-set change
ï The radar TX only controls the SNR and the 

illumination of the target via its waveform

ï Not the information content

Å Information content is:
ï Function of geometry of the target

ï And the interaction of the target with EM energy
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Å Scattering mechanisms

Å EM Theorems

ïUniqueness ïonly one solution

ïSuperposition ïconsider sources in isolation

ïLinearity - Maxwellôs equations are linear (linear medium)

ÅLinear system theory (time and frequency response) is valid

ïScaling of targets

ÅReducing target requires increased conductivity

Target ïEM Field Interaction
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Information Theory

Overview and Application to Radar Identification

Å The radar problem can thus be analysed as a non-optimal communication 

system.  

Å The factor which limits the performance of a communication system is the 

amount of mutual information between the transmitted signal set and the 

received signal set. 

Å To analyse the radar problem the amount of mutual information between all 

possible target waveforms (responses) and the waveform(s) received at the 

radar by its receiver has to be estimated
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Information Theory ïSelf Information

ÅSelf information

ïMeasure of ñsurpriseò when observing the output of a random variable (RV)

ïMessage length required to transmit the specific outcome of a RV

ï Base of log() is usually 2

ï Then information is measured in bits

ÅExamples:
Coin      p = ½          H(x) = 1 bit

Dice      p = 1/6        H(x) = 2.59 bits

Lottery   p = 1/(10,068,347,520)       H(x) = 33.23  bits

p = 0.999999999900679     H(x) = 1.433e-10 bits

ÅWhat happens when p = 0?

Standard information theory approach: 
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Information Theory - Entropy

ÅAverage ñself informationò over all outputs of RV

ÅEntropy is the average number of bits required to transmit the 

result of the output of the RV

ÅProperties:

ïH(X) >= 0

ï H(X) <= log2(N)       

ï H(X) = log2(N)  when pk(x) = 1/N    for all k = 1..N

ÅExample

ïRV with two outcomes:

ï Eg. Biased coin
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Information Theory - Entropy

ÅExample ï2 output Random Variable:
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ÅDefinition:
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Information Theory ïJoint & Conditional Entropy
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Å Joint Entropy

ÅMeasure of the uncertainty in a set of RVôs.

ï <= sum individual entropies

ï >= max (H(X), H(Y))

ÅConditional Entropy

ÅAmount of information needed to describe X, given Y has occurred

ïOR: Additional bits needed to communicate X given that both parties know Y.

ïNote: conditioning always reduces entropy
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Information Theory ïMutual Information (MI)
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ÅMutual Information

ïReduction in a-priori uncertainty in X

ïAmount of information one RV contains about another RV

© CSIR  2019

( ) ( ) ( ) ( )

( )
( )

()()

; | ;

,
, log

X yx R y R

I X Y H X H X Y I Y X

p x y
p x y

p x p yÍ Í

= - =

å õ
= æ öæ ö

ç ÷
ä ä



Information Theory ïProperties of MI
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Å Always positive

Å Zero if and only if X and Y are statistically independent

ÅMore reliable measure of independence than correlation

Å Maximum number of partitions of X based on observation of Y

Å Equivalent to maximum number of classes which a classifier can 

discern.
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Information Theory ïMI vs Correlation

ÅCorrelation coefficient

ï2nd Order Statistic



Information Theory ïMI vs Correlation Example 1
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ÅExample: 64 equally probable points on unit circle

ÅCorrelation = 0.0

ÅMI = log(1/64/(1/32 x 1/32))

= 4 bits

ÅH(Q) = log(32)

= 5 bits

ÅH(Q|I) = H(Q) ïMI

= 5 ï4

= 1 bit

ÅH(I,Q) = log(64)

= 6 bits

ÅMI = H(I) + H(Q) ïH(I,Q) 

= 5 + 5 ï6 = 4 bits

ÅMeaning of 1 bit ?


