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• Interaction of Target and Electromagnetic (EM) Wave

• Information theory

– Introductory concepts

– Mutual information (MI)

– MI for radar

– Fano’s Inequality (Relate P(error) to MI)

– MI derivation for discrete input continuous output channel

• Example Results

– F14, F15, F16 Comparison

– F18, F35 Polarization Comparison

– F14, F15, F16 Comparison: coherent vs. non-coherent

– Boeing 707 (1:25) Measurements, Polarization Comparison

• Conclusions
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• Need a technique to “design” a completely new NCTR recognition function 

– Take into account the performance of and Interaction between :

• Radar sensor, Target, Signal processing algorithms

– Need new theory that allows for the analysis and comparison 

of disparate radar system conceptual design

– Bound on absolute maximum performance achievable to test NCTR

• Information Theory based approach

– Information Theory deals with fundamental limits on performance

– Mainly used in communications - little prior art for NCTR

• Demonstrate that information theory, and specifically the concept of mutual 

information (MI) can improve insight during NCTR designs

• Gain scientific insight into information theory methods as applied to radar 

target recognition

• Gain insight into interpretation of information theoretic results for radar NCTR 

problems
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• Standard approach

– Use Feature Extraction followed by Classifier

– Single confusion matrix, badly defined SNR

– Adversarial Examples (Next slide)

– Often researchers try to make everything an image and then use standard image 

classification techniques

• Information Theory approach

– No Feature extraction

– No Classifier

– Estimates the best possible recognition performance given
• Targets and materials

• Target geometries

• Radar waveforms

– Graph of P(error) vs SNR
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• Attack on a classifier

– What is the least interference which can be added to change the output to force 

an error
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Adversarial  Examples
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• Examples: Noise, single pixel, 3-D printed
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Adversarial  Examples
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• Information theory mathematically formalizes the relatively vague concepts of 

a “message” and the amount of “information” the message contains. 

• Shannon 1948
– “The mathematical theory of communication” - Predicts

• Maximum compression of a source

• Maximum data rate over a channel

– Unfortunately he doesn’t say how to achieve it

• Communication:

• Radar:

• Important distinction – mind-set change
– The radar TX only controls the SNR and the 

illumination of the target via its waveform

– Not the information content

• Information content is:
– Function of geometry of the target

– And the interaction of the target with EM energy
© CSIR  2019

Information Theory - Overview
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• Scattering mechanisms

• EM Theorems

– Uniqueness – only one solution

– Superposition – consider sources in isolation

– Linearity - Maxwell’s equations are linear (linear medium)

• Linear system theory (time and frequency response) is valid

– Scaling of targets

• Reducing target requires increased conductivity

Target – EM Field Interaction
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Information Theory

Overview and Application to Radar Identification

• The radar problem can thus be analysed as a non-optimal communication 

system.  

• The factor which limits the performance of a communication system is the 

amount of mutual information between the transmitted signal set and the 

received signal set. 

• To analyse the radar problem the amount of mutual information between all 

possible target waveforms (responses) and the waveform(s) received at the 

radar by its receiver has to be estimated

Slide 9



Information Theory – Self Information

• Self information

– Measure of “surprise” when observing the output of a random variable (RV)

– Message length required to transmit the specific outcome of a RV

– Base of log() is usually 2

– Then information is measured in bits

• Examples:
Coin      p = ½          H(x) = 1 bit

Dice      p = 1/6        H(x) = 2.59 bits

Lottery   p = 1/(10,068,347,520)       H(x) = 33.23  bits

p = 0.999999999900679     H(x) = 1.433e-10 bits

• What happens when p = 0?

Standard information theory approach: 
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Information Theory - Entropy

• Average “self information” over all outputs of RV

• Entropy is the average number of bits required to transmit the 

result of the output of the RV

• Properties:

– H(X) >= 0

– H(X) <= log2(N)       

– H(X) = log2(N)  when pk(x) = 1/N    for all k = 1..N

• Example

– RV with two outcomes:

– Eg. Biased coin
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Information Theory - Entropy

• Example – 2 output Random Variable:
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• Definition:
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Information Theory – Joint & Conditional Entropy
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• Joint Entropy

• Measure of the uncertainty in a set of RV’s.

– <= sum individual entropies

– >= max (H(X), H(Y))

• Conditional Entropy

• Amount of information needed to describe X, given Y has occurred

– OR: Additional bits needed to communicate X given that both parties know Y.

– Note: conditioning always reduces entropy

© CSIR  2019
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Information Theory – Mutual Information (MI)
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• Mutual Information

– Reduction in a-priori uncertainty in X

– Amount of information one RV contains about another RV

© CSIR  2019
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Information Theory – Properties of MI
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• Always positive

• Zero if and only if X and Y are statistically independent

• More reliable measure of independence than correlation

• Maximum number of partitions of X based on observation of Y

• Equivalent to maximum number of classes which a classifier can 

discern.
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Information Theory – MI vs Correlation

• Correlation coefficient

– 2nd Order Statistic



Information Theory – MI vs Correlation Example 1
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• Example: 64 equally probable points on unit circle

• Correlation = 0.0

• MI = log(1/64/(1/32 x 1/32))

= 4 bits

• H(Q) = log(32)

= 5 bits

• H(Q|I) = H(Q) – MI

= 5 – 4

= 1 bit

• H(I,Q) = log(64)

= 6 bits

• MI = H(I) + H(Q) – H(I,Q) 

= 5 + 5 – 6 = 4 bits

• Meaning of 1 bit ?



Information Theory – MI vs Correlation Example 2
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• Example: 64 equally probable points on Lissajous curve

• Correlation = 0.0

• MI = log(1/64/(1/32 x 1/16))

= 3 bits

• H(Q) = log(32) = 5 bits

• H(I) = log(16) = 4 bits

• H(Q|I) = H(Q) – MI

= 5 – 3 = 2 bits

• H(I|Q) = H(I) – MI

= 4 – 3 = 1 bit

• H(I,Q) = log(64)

= 6 bits

• MI = H(I) + H(Q) – H(I,Q) 

= 5 + 4 – 6 = 3 bits



Information Theory – Channel Capacity
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• Channel capacity:

• Limits

SNR → ∞ then C → ∞

BW → ∞ then:

Increasing bandwidth doesn’t 

continue adding information !

• Shannon’s coding theorem:

As long as rate is less than channel 

capacity, then

P(error) can be made arbitrarily small

• NOT possible in radar !

– Can’t control the target’s waveform
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Information Theory - Extras
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• Fano’s inequality – lower bound on P(error)

• Data processing inequality

– No function or algorithm Z=f(Y) can increase information content of Y

• Discrete input continuous output MI:
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Information Theory – Fano’s Inequality
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• Strictest version of Fano’s inequality – lower bound on P(error)

• H(Pe) – Entropy of RV of error event

• Derivation to relate Perror to MI
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MI Calculation 
– Discrete input, continuous output channel
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• Starting from:

• N-Dimensional MI in Gaussian noise:

• N-Dimensional MI in Gaussian noise, amplitude only:
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MI Calculation 
– Discrete input, continuous output channel

Slide 23

© CSIR  2019

• Why can’t we just use a N-Dimensional histogram ?
– Largest addressable element in MATLAB:

• 248 – 1 = 2.8e+14

• This is approximately 2 million GBytes of RAM

– Say 20 bins per dimension

– And 100 dimensions

– This gives 20100 = 1.2677e+130 bins in the histogram

– This is approximately 9.44e+121 Gbytes of RAM

– Still out by a factor of  4.7e+115

– This is about 300 years by Moore’s law

– Currently highest dimension problem was N = 4002

– For now, HAVE TO do the maths !



MI Calculation - Validation
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• Low dimensional comms results

• High dimensional Gaussian
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12D signal set, 256 waveforms

12D Channel capacity
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MI Calculation - Validation
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• MFSK, paper by NASA (Butman 1973)

– Application: Planetary lander in dense turbulent dispersive atmosphere

– E.g. Venus, Jupiter, Saturn



MI Calculation – F14, F15, F16
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Calculation of High Range Resolution Profiles (HRRP)
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Span : 22 m x 5 m
Pixels: 440 x 100
Resolution cell : 5 cm x 5 cm
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Example Result: MI for 1024 Waveforms (HRR Profiles)

F14, F15, F16
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X: 23.98

Y: 9.995

X: 19.29

Y: 9.995

X: 20.97

Y: 9.995

Capacity bound

Gauss 1024 waveforms

F14

F15

F16

25 to 30 dB Worse than optimal
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Example Result: Effect of Multiple Targets on P(error)

P(error)
P(incorrect identification)

Convert MI to P(error)
using Fano’s inequality

Fano’s inequality relates MI and
P(error) for a given scenario

As you add more HRR profiles to the 
set to be classified, the noise 
induced requires a higher SNR to 
achieve the same P(error)

(Curse of  Dimensionality at work !)
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Example Result: Effect of Multiple Targets on P(error)

P(error)
P(incorrect identification)

Convert MI to P(error)
using Fano’s inequality

Fano’s inequality relates MI and
P(error) for a given scenario
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Low P(error) Example
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Capacity bound

Gauss 1024 wvfrms

F14
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F14,F15,F16

F15,0.01 deg (0-10.23)

F15 0.01 deg (0-359.99)

log
2
(36000)

Gauss 36000 wvfrms

• F15
Length = 19.43 m
Wingspan = 13.05 m

Az sampling (req)
Broadside: 0.011°
Head on:    0.016°

• Az step = 0.01°
• 36 000 waveforms

Max MI = 15.136 bits

Radar 
2016
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F15: Effect of oversampled HRR (in azimuth) and using 

knoweldge (estimate) of aspect angle
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Effect of  “known” 
approximate heading
10 dB gain !



• WB (480 MHz), 2.5 GHz, 10 GHz, 17.5 GHz
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Effect of Carrier Frequency
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F14, BW = 480 MHz @ 10 GHz

F14, BW = 480 MHz @ 2.5 GHz

F14, BW = 480 MHz @ 17.5 GHz

Original
@ 10 GHz

Higher frequency 
(17.5 GHz)

Looking for more
randomness due to
shorter wavelength

BUT: Lower information !!
(~ 1 dB loss in SNR)

Lower frequency
(2.5 GHz)

More information !!
(~ 2-3 dB gain in SNR)

Scattering mechanisms 
persist over wider angles

Percentage BW
19.2 %    4.8 %    2.74 %
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MI Calculation – Ultra Wideband
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F14, BW = 480 MHz @ 10 GHz

F15, BW = 480 MHz @ 10 GHz

F16, BW = 480 MHz @ 10 GHz

F14, 10-18 GHz,  f = 100 MHz

F14, 2-10 GHz,  f = 100 MHz

F14, 2-18 GHz,  f = 200 MHz

F14, 2-18 GHz,  f = 100 MHz

F15, 10-18 GHz,  f = 100 MHz

F16, 10-18 GHz,  f = 100 MHz

162-D Capacity

322-D Capacity

Original: 480 MHz @ 10 GHz

F14  10-18 GHz vs 2-10 GHz
∆f = 100 MHz, N freq = 81 

F14 2-18 GHz, N freq = 81

F14 2-18 GHz, N freq = 161

F15, F16 10-18 GHz

• WB (480 MHz) vs. UWB (8 GHz and 16)
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• Single polarization at 116 frequencies – 116 x 2 (IQ) = 232 Dimensional integral

• [VV HH 2VH] at 116 frequencies – 696 Dimensional integral (Accuracy : 0.01 bits)
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Example Result: Use of Polarisation

F35

F18
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Result Non-coherent processing, F14, F15, F16

Coherent

Non-coherent

(Envelope only)

Loss ≈ 10 dB
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Result Non-coherent processing, F14, F15, F16

Coherent

Non-coherent

(Envelope only)

Loss ≈ 10 dB
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Boeing 707 Scale Model (1:25)
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Measured frequency:    2-18 GHz
Scaled frequency:         80 – 720 MHz
Azimuth:                            1799 step (0.2°)

Frequncies: 2001
Dual Pol MI: 2001 x 2 (pol) x 2 (I,Q)

= 8004 Dimensional Integral



• Developed a method to apply Mutual Information to predict NCTR performance

• Now allows identification performance to be estimated 

– P(error) vs SNR

• Identification performance comparisons and trade offs were carried out for wide 

range of radar parameters and target types

• Brings new insight to allow system level decisions

– Especially During the design phase of a radar

• Might help to avoid classification steps often used in existing NCTR techniques 

which might destroy potentially useful  information

• New insight gained into the MI concept and interpretation of results

• Can’t add “unknown” target into this theory, yet.

• Opened a new set of questions
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Conclusions
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