Excellent DF-Sensorsfor strategic and tactical EW-Systems

Olaf Lukas, Rohde & Schwarz, Munich, Radiomonitoring & Radiolocation Division

at the **Aardvark Roost**

Pretoria, SA, 2009-08-25 (14:30 – 15:10)

Sensors in SIGINT /SpectrumMonitoring

- Detect –and DF- strong and weak signals in HF-VHF-UHF
- Give a good precision/resolution in F, t and azimuth (location)
- Can deliver metadata ("quality", probability)
- Help to distinguish wanted / unwanted target emitters
- See "everything" without delivering "too much"
 - scans, bandwidth/wideband, filtering
 - sensitivity, accuracy, speed
 - characteristics, cooperation with signal analysis
 - automatisms, synchronous/asynchronous and easy/expert
 - calibration, compensation, combination
 - Quasi-parallel on many channels (e.g. ATC)
- Are more than just DFs as they go to land + air + sea
- Are robust against "unfriendly environment"
- What if ... (too) many signals? Blanking? Multi-user?
- Have special modes for spread signals, FH and TDMA, ...

Commander: "Give me the Tactical Situation"

Other Intelligence Information

Assessment of other intelligence sources (HUMINT, OSINT, IMINT)

<u>Tactical Situation</u> <u>Picture</u> (TSP)

Data Fusion of all information sources

Electronic Order of Battle (EOB)

SIGINT Assessment of all Electronic Emitters

Own Forces Information

Assessment of location, tactical efficiency, status of suplies, etc.

Communication
Order of Battle (COB)

COMINT systems

Radar Order of Battle (ROB)

ELINT systems

nsors for strategic

| 4

and tactical EW-Systems

An difficult **goal**: Building a **COB** ... from **nets**

Pre-requisit: building nets from emitters

Needed: building emitters from emissions

In:
many
emissions

Out:
different
transmitters

Inputs

instantaneous f, t, α , β , Q averaged f, t, α , Q (on-time, length, tol.) own Posn, north, time client for this channel (history f, t, α , β , Q)

(raw measurements)

Outputs

emitter(s) at f, t, α, β, Q "character"-class additional params

From very small to big

and tactical EW-Systems

| 8

...and a lot of DF-antennas

Environmental influences (excellent to ok)

60°

Environmental influences (bad to worst)

Multi-Element DF Antennas:

Accurate results even with 50% reflections -?

Frequency example	Accuracy of	Accuracy of a
	R&S®DDF255/ADD253	5 element DF antenna
	(9 el.; with 50% reflections)	(with 50% reflections)
160 MHz	20° RMS	21° RMS
300 MHz	12° RMS	12° RMS
460 MHz	8° RMS	95° RMS
900 MHz	4° RMS	150° RMS
1500 MHz	9° RMS	110° RMS
3000 MHz	6° RMS	160° RMS

Maximum permissible diameter of the DF antenna relative to the wavelength for unambiguous DF results for up to 50% of environmental reflections

Even though the receive signal consist 50% of reflections DDF®255 gives a reasonable accuracy. DF antennas with just 5 elements will show wild bearings at most frequencies.

9 elements

Correlative interferometer

Flexibility in the digital domain: DF methods / Preprocessing of raw data File Edit Control View Extras ? 770.840 001 MHz Squ. 10 DF quality is excellent! 15.0 dbuV 90 % 770.840 MHz no energy in [dBµV] RF-Spectrum 9.980 MHz spectrum visible no 768.146 5.494 773.640 fluctuation in Scan mode Years of).08 | Excellent DF-Sensors for strategic bearing Driving ROHDE&S and tactical EW-Systems | 13 Innovation

DF on Frequency agile signals

10 MHz bw stare @<500µs (20kHz)
Stepmode 10 MHz
@<1ms per step
Independent of occupancy
Automatic preprocessing
Automatic choice of antenna and DF-algorithm
System support

Superresolution

Superresolution just Science?

Location, DF and TDOA

- TDOA alone can be quite accurate and attractive with signals of wide bandwidth or repetitive pulses
 - For continuous emissions that means (*4): TDOA location accuracy = lightspeed / bandwidth*2 e.g. **25kHz => 6,0 km**; 200 kHz => 750m; but 1 kHz => 150 km
- Minimum number of stations is with DF 2 (to 3), with TDOA 3 (to4) TDOA stations can be simpler; antenna and receiver must be good
- With pure TDOA no
 - homing or running fix,
 - single station (ship, aircraft,...)
 - silent mode (must exchange much data to correlate, co-location problem)
 - short time reaction strategy (must exchange and correlate to get result)
 - universal (i.e. signal independent location capacity)

Multi-User Example Air Trafic Control

Integration into "integrated C4I-systems"

2008-05-24 / 8VTE-RJ

DF - Extras

- I One model with Interference-Canceller for co-located transmitters
- I Correlation based correction for ship's structures (►HF)
- I Several models with quasi parallel DF for 2 (4) channels
- I Single channel, wideband and scan-modes –also with intelligent averaging and/or GPS syncronisation
- I Signal classifier & raw-data recording available
- I GUI software, remote control and automatic location systems (single-/multiuser) available
- I GSM / TDMA mode (500µs, synchronized to downlink)
- I Special superresolution mode, SSL-mode (HF)
- I DDFs and ADDs available for 0.3 to 6000 MHz (monitoring max. 0.01 .. 26 500 MHz), Watson-Watt & Correlation.

It's all about balance...

Thank you!
Thank you!

I've got it, too, Omar... a strange feeling like we've just been going in circles

